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ABSTRACT 

This paper investigates a template-matching approach to automatic target recognition (ATR) for SAR for 
the case in which positive identification of a single known target type is required. ATR schemes are 
necessarily supported by databases of training imagery and of particular interest in this study was the 
impact on performance of using a database of simulated imagery to match against real in situ SAR 
imagery. Assessments have been made using 30cm resolution, X-band, spotlight imagery to provide the in 
situ test data and training databases firstly based on different examples from the same in situ data to 
provide an idealised baseline and secondly using simulated imagery. The impact on performance for both 
single channel and polarimetric data is reported and discussed.  

1. INTRODUCTION 

A particularly important automatic target recognition (ATR) task for synthetic aperture radar (SAR) 
targeting applications is that of single target identification which requires the positive identification of a 
single known target type within a relatively confined area. A database of previously generated training 
images will be available which may contain previously collected in-situ data, images of the target on a 
turntable in a controlled environment (ISAR) or images generated through the use of signature prediction 
tools. In this paper, a template-matching approach to the single target identification problem has been 
considered rather than a feature-based approach as discussed in Section 2. The robustness of template-
matching to variations in aspect angle, measurement day and use of different vehicles of the same type has 
been studied using 30cm resolution, X-band, ISAR data of a military vehicle as discussed in Section 3. 
This natural within-class variation has been used to quantify confidence bounds in the matching process. 
The performance of the resulting ATR scheme has then been assessed in the ideal case in which 
independent training and test sets derived from the same 30cm resolution, X-band, spotlight imagery data 
source are used. However, in an operational system, the training database will be non-ideal in that it will 
have been obtained under different circumstances to the operational imagery against which the ATR is to 
be used. Performance assessments using a training database of simulated target signatures and a test set of 
spotlight SAR imagery have thus been performed to investigate the impact on performance of using such 
non-ideal training data. The results are presented in Section 4 and conclusions are drawn in Section 5.  

Several data-sets have been used to support this study consisting of in situ images of targets in spotlight 
SAR imagery, turntable ISAR imagery of a target and simulated target images. These are described in 
more detail in the Appendix.  

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 
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2. TARGET CLASSIFICATION SCHEMES 

Target classification is achieved using a database containing previously generated imagery of targets from 
a variety of different classes of interest. This is called the training set. The target image under test is 
compared to the images in the database and the closest match is established in some manner. If a 
sufficiently close match is found, then the target is declared to belong to the same class as the closest 
match. However, if the match is insufficiently close, then the target is declared as being unrecognised. The 
fundamental characteristic of different classification algorithms is how they establish the closeness of the 
test image to the target classes represented in the training set. There are many possible ways in which this 
can be achieved but they basically divide into two different types of approach, namely template-matching 
and feature-based classification.  

In template-matching, the test image is compared with every image in the training database on a pixel-by-
pixel basis to find the closest match. This comparison will normally be achieved by some form of 
correlation operation with the classification being declared on the basis of the highest correlation value 
found. One of the main drawbacks with template matching is that searching through each image in the 
training database can be extremely computationally expensive since the training database must contain 
representative images of every target in every possible configuration. This can require a very large number 
of images given that SAR images of the same vehicle at different aspect angles can look very different, 
together with the fact that a particular vehicle can assume many different configurations depending on the 
articulation of moving parts, such as the turret of a main battle tank, and the attachment of objects such as 
oil drums. Nevertheless, the template-matching concept provides a basic, robust approach to classification.  

The alternative feature-based approach to classification alleviates the problem of searching through every 
image in the training database by characterising the targets of a particular class in terms of particular 
properties termed ‘features’. Features can be based on obvious physical characteristics of the target such 
as length and width or may be more abstract such as statistical measures of the variation in pixel 
brightness across the target. The idea is that a single set of features can be used to characterise many of the 
target images from a particular class. This means that, rather than comparing a particular test image with a 
large number of training images, the feature values measured for the test image can be compared with the 
single set of feature values which characterise a whole set of training examples. Feature-based approaches 
are thus potentially much more efficient than temple-matching approaches. However, the problem comes 
in defining an appropriate set of features and defining the method of comparison with features measured 
for the training examples.  

For the targeting application considered in this study, the classification problem is to detect and recognise 
one particular target type within a SAR scene. For example, the mission may be to find a missile launcher 
based on collateral information that one or more are likely to be present in a particular area. In this case, 
the training database will require examples of only one target type and so the use of a template-matching 
approach may be appropriate. For this reason, the classification scheme developed in this study has taken 
the template-matching approach. 

3. WITHIN-CLASS SIMILARITY 

3.1 Introduction 
SAR imagery can be presented in a number of forms. The initial SAR image produced from the raw data 
consists of complex-valued pixels which constitute the complex SAR image. The complex image can then 
be used to form the amplitude image, by taking the modulus of the complex values, or the intensity image, 
by taking the square of the modulus of the complex values. Either of these can be displayed as greyscale 
images to the operator although, because of the large dynamic range of SAR imagery, it is found that the 
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amplitude image is the more suitable of the two for display. For template-matching, it is necessary to 
establish which form of SAR image it is most appropriate to use. The determining factors on which this 
decision should be made are the degree to which targets from the same class are assessed as being similar, 
i.e. the similarity within class, and the degree to which targets from different classes are assessed as being 
different, i.e. the classification performance. An additional consideration is that a different form of SAR 
image may be even more appropriate for classification based on template matching. For example, if an 
appropriate threshold is applied to the target images to give a binary output such that pixels on the target 
are assigned a value 1 and pixels in the background are assigned a value 0 then a true template of the 
target results. Whether this form of image provides better template-matching performance needs also to be 
considered. 

3.2 Correlation measures 
The standard measure of correlation is given by the correlation coefficient 
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where x and y are pixel values in the images to be correlated, N is the number of pixels and i enumerates 
the pixels in the image. The correlation coefficient can take values between –1 and 1 where a value of 1 
indicates perfect correlation, a value of 0 indicates that the variables (i.e. images in this case) are 
uncorrelated and a value of –1 indicates perfect anti-correlation (e.g. one image will be the negative of the 
other image).  This measure is the best estimate of the correlation assuming that both variables are subject 
to additive, Gaussian noise. For SAR images, the noise process is multiplicative speckle [1] and so the 
correlation coefficient given above will not provide the most accurate estimate. However, the calculation 
of this measure can be implemented extremely efficiently using Fourier transforms and this advantage far 
outweighs the disadvantage of some loss of accuracy. In this section, the variation of the correlation 
coefficient over example images for a particular target class is investigated. The objective is to establish 
that the correlation coefficient can be used to determine that the images are of the same target.  

3.3 Self-correlation 
The ISAR turntable imagery used for this investigation provides images of the target at every degree over 
360° of aspect angle. Each of these images can be correlated with the same full set of 360 images to 
produce 360×360 values of the correlation coefficient. In the following results, the HH polarimetric 
channel was used.  

The self-correlation properties using SAR images in the complex, intensity, amplitude and binary forms 
have been investigated. Figure 3.1 shows the averaged correlation coefficient variation is shown as a 
function of angular difference. In these graphs, the fitting procedure has smoothed the spike at 0° angular 
difference and the fact that all the graphs rise to a value of 1.0 at this point is not clear. However, the 
important point is that the value of the correlation coefficient drops off at different rates for different 
image forms. This drop-off rate is most for the complex image and least for the amplitude image. In terms 
of classification, it is desirable that the procedure should be robust to small changes in aspect angle 
otherwise the training database would need to be populated using images at a very fine sampling of the 
aspect angle. From this point of view, it is thus clear that the amplitude image is to be preferred. The “de-
correlation” length for the amplitude image, measured in this case by a drop in the correlation coefficient 
to 0.8, is about 5° for the amplitude image which is an important consideration when forming the training 
database.  
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Figure 3.1: Plots of average correlation coefficient as a function of angular difference for the 
complex image (black), the intensity image (blue), the amplitude image (red) and the binary 

image (yellow).  

3.4 Cross-correlation between different days 
It is now necessary to investigate the robustness of the correlation coefficient to variations in the imaging 
circumstances. Firstly, if the same target is imaged on two different days, a robust classification scheme 
should still recognise it as the same target.  

It is to be expected that, due to noise variations in imaging between the two days, the maximum 
correlation for an image at a particular aspect angle on one day will not necessarily be obtained using the 
image at exactly the same aspect angle on the other day. However, it should be the case that the angular 
difference between the best matching images will be small. Given the de-correlation length of 5° observed 
earlier, it is thus reasonable to search for the maximum correlation value within ± 5° of the matching 
angle.  

Figure 3.2 shows graphs of the maximum correlation values found within this interval as a function of 
aspect angle. In other words, for images at each aspect angle on the first day, the maximum correlation 
with images on the second day within an angular difference of ± 5° was found and plotted on the graph. It 
can be see that the amplitude image produces the highest maximum values whilst the complex image 
produces the lowest maximum values.  

The mean and standard deviation of these maximum values as they vary over aspect angle have been 
calculated and are presented in Table 3.1. This quantifies the observation that correlation applied to the 
amplitude image provides the greatest robustness to image variations between different days.  

Use of Non-Ideal Training Data in SAR ATR for Targeting  



RTO-MP-SET-080 32 - 5 

 

 

 

Figure 3.2: Plots of the maximum correlation within an angular difference of ± 5° from the corresponding 
aspect angle for target images obtained on different days for the complex image (black), the intensity image 

(blue), the amplitude image (red) and the binary image (yellow). 

Image form Mean Standard deviation 

Complex 0.49 0.15 

Intensity 0.84 0.07 

Amplitude 0.90 0.02 

Binary 0.78 0.03 

 

Table 3.1: Mean and standard deviation of maximum correlation values over aspect angle for 
plots shown in Figure 3.2.  

3.5 Cross-correlation between different examples of same vehicle 
A similar exercise can now be undertaken to investigate robustness to image variations which result when 
the correlation measure is applied to images of two different vehicles of the same type, i.e. it is only the 
registration numbers that are different.  

Figure 3.3 shows graphs of the maximum correlation values found within the angular difference interval 
of ± 5°. Once again it can be seen that amplitude image correlation provides the highest maximum values 
whilst complex image correlation provides the lowest maximum values.  
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Figure 3.3: Plots of the maximum correlation within an angular difference of ± 5° from the 
corresponding aspect angle for target images obtained using a different vehicle of the same 

type for the complex image (black), the intensity image (blue), the amplitude image (red) and the 
binary image (yellow). 

These observations are quantified in Table 3.2 using the mean and standard deviation of the maximum 
correlation value as before. It is clear that amplitude image correlation provides the greatest robustness to 
variations between different examples of the same target type. It should be noted that the mean maximum 
correlation coefficient in this case is significantly lower than the value obtained for variation between 
different days. Essentially the experiment for variation between different days involves taking a single 
example of the vehicle type, driving it onto the turntable, imaging it, driving it off, driving it on again and 
imaging it a second time. However, the experiment for different examples of the same vehicle type 
involves exactly this process together with the replacement of the vehicle with another of the same type 
between imaging runs. Thus it is to be expected that the loss in correlation observed for different days will 
be incurred together with an additional loss associated with use of different examples of the vehicle. These 
results are thus consistent with expectation. 

Image form Mean Standard deviation 

Complex 0.36 0.06 

Intensity 0.72 0.07 

Amplitude 0.83 0.02 

Binary 0.71 0.02 

Table 3.2: Mean and standard deviation of maximum correlation values over aspect angle for 
plots shown in Figure 3.3. 
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4. PERFORMANCE RESULTS 

4.1 Introduction 

The aim of this section is to assess the performance of the template-matching approach to target 
recognition. On the basis of the discussions in section 3, the amplitude image has been used in the 
experiments. Furthermore, since the trials data which has been used to support these experiments is fully 
polarimetric, the amplitude of the polarimetric span image has been used.  

Whilst it has been argued earlier that template-matching is not appropriate for many-class problems due to 
the computational effort required, it is valid to explore the performance experimentally when computation 
time is not a critical issue. In particular, it is important to introduce the concept of an unrecognised class 
and also to investigate the impact on performance of the presence of targets not represented in the training 
database (termed “confusers”). These issues will be addressed in this section under the discussion of 
classification results.  

The main problem to be addressed by this study was identified as that of single target identification which 
is of particular relevance for targeting applications. This can be viewed as an extreme example of the 
classification problem with confusers when everything other than the single target of interest can be 
considered to be a confuser. The results for the single target identification performance assessment are 
also presented in this section and follow naturally from the discussion of more general classification.  

4.2 Classification results 

For a classifier to be effective, it must not only be able to classify targets of interest, but it must also be 
able to declare targets as being unrecognised if there is insufficient confidence that the target belongs to 
one of the known classes. The correlation coefficient provides an effective means of assessing confidence 
since it provides a normalised measure lying between 0 and 1 which quantifies the goodness of the match 
between a test image and a training image. Thus it is simply necessary to define a threshold on the 
correlation coefficient values such that positive classification declarations are only made when the 
coefficient exceeds this threshold and otherwise the target is declared to be unrecognised.  

Previous discussions regarding similarity within class in section 3 have shown that the maximum 
correlation coefficient generally exceeds 0.8 for targets from the same class which have been imaged 
under different circumstances. This value thus provides a suitable threshold value to be considered. In the 
following results, a threshold values of 0.8 will be used together with 0.0 to illustrate the performance 
when there is no unrecognised class.  

 A B C D E F G H I U 

A 79 1 0 5 1 1 14 0 0 0 

B 0 96 0 2 2 0 0 0 0 0 

C 4 8 74 3 5 2 5 0 1 0 

D 8 1 0 85 0 4 3 0 0 0 

E 5 1 0 5 86 0 3 0 1 0 

F 6 10 0 5 8 65 5 0 0 0 

G 0 0 0 2 3 1 95 0 0 0 

H 3 16 0 7 2 0 5 59 8 0 

I 1 13 0 1 5 0 3 0 78 0 

Table 4.1: Confusion matrix for 9 class problem with correlation threshold defining 
unrecognised class set to 0.0.  
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 A B C D E F G H I U 

A 68 1 0 0 1 1 12 0 0 17 

B 0 94 0 1 2 0 0 0 0 4 

C 0 0 0 0 0 0 0 0 0 100 

D 8 0 0 77 0 4 2 0 0 9 

E 4 0 0 0 58 0 1 0 0 38 

F 0 0 0 4 2 14 0 0 0 81 

G 0 0 0 2 3 1 93 0 0 2 

H 0 0 0 0 0 0 0 5 0 95 

I 0 0 0 0 0 0 0 0 0 100 

Table 4.2: Confusion matrix for 9 class problem with correlation threshold defining 
unrecognised class set to 0.8. 

Tables 4.1 and 4.2 show confusion matrices including an unrecognised class using the correlation 
coefficient thresholds of 0.0 and 0.8 respectively. The entries show the percentage of test examples 
classified as a particular target class. When there is no unrecognised class, the average correct 
classification rate is close to 80%. However, it is interesting to note that., when the unrecognised class is 
introduced, a number of images fail to produce correlation values exceeding 0.8 despite being represented 
in the training data. Indeed, almost all test examples of target types C, H and I are declared as being 
unrecognised as well as significant numbers of target types E and F. It should be noted that target types C, 
H and I are the decoy targets in the scene whilst E is a tractor with trailer and F is a water tower, i.e. none 
are true military vehicles. In fact, the only vehicles for which the classifier is confident , i.e. A, B, D and 
G, are precisely the military vehicles in the scene. This appears to suggest that the characteristics of 
military vehicles appear to make them more easily distinguishable than non-military objects.  

 A B C D E F G H I U 

A 70 1 0 0 0 0 12 0 0 17 

B 0 95 0 1 0 0 0 0 0 4 

C 0 0 0 0 0 0 0 0 0 100 

D 9 1 0 79 0 0 2 0 0 9 

E 4 1 0 0 0 0 3 0 0 93 

F 4 0 0 7 0 0 4 0 0 85 

G 1 1 0 2 0 0 95 0 0 2 

H 0 0 0 0 0 0 0 0 0 100 

I 0 0 0 0 0 0 0 0 0 100 

Table 4.3: Confusion matrix for 4 class problem with 5 confusers and correlation threshold 
defining unrecognised class set to 0.8. 

Use of Non-Ideal Training Data in SAR ATR for Targeting  



RTO-MP-SET-080 32 - 9 

 

 

In an operational ATR system, it is likely that the training database will contain comprehensive examples 
of military vehicles but that other objects will not necessarily be represented. Thus it is important to 
understand the performance of a classifier when the training set is restricted to military vehicles but 
confusers are present in the test set. Table 4.3 shows the classification results when only target types A, B, 
D and G are represented in the training database but an unrecognised class is included with a threshold of 
0.8. It can be seen that the classifier rejects all the decoys (C, H and I) as being unrecognised as well as 
most of the tractor with trailer images (E) and water tower images (F). Confusers which are classified as 
military targets  are false alarms and these represent 4.4% of the total in this experiment. For the military 
vehicles, 8% are declared as being unrecognised so that 92% can be considered to have been detected as 
being military vehicles. These concepts of detection and false alarm rates within a classifier will be seen to 
be of great relevance in the single target identification case. Finally, the correct classification rate for the 
four military vehicles is 85% in this case.  

4.3 Single target identification results 
Single target identification is essentially a classification problem in which the training database contains 
only one class of military target. A suitable confidence threshold must be set, i.e. a threshold on the 
correlation coefficient value in this case, and then a test target image is declared as either being the target 
of interest or unrecognised. The concepts of detection and false alarm rates are then entirely appropriate to 
this classification problem. Detections occur when an example of the target class is correctly recognised 
whilst false alarms occur when a confuser is incorrectly declared to be a member of the target class. It is 
thus possible to plot the probability of detection against the probability of false alarm as the correlation 
threshold is varied to produce the so-called receiver operating characteristic (ROC) curves most usually 
associated with target detection assessments.  

ROC curves have been produced for each of the nine targets in the in situ trial set. In each case, the 
training database contains only images of the particular class of interest. All the images in the test set are 
classified as either belonging to this class or as being unrecognised. The correlation threshold is varied 
from 0 to 1 and the resulting variation of probability of detection against probability of false alarm is 
plotted. Figure 4.1 shows the resulting curves for Targets A to I excluding Target G whilst the first graph 
in Figure 4.2 shows the ROC curve for Target G. It is interesting to first consider the decoy targets C, H 
and I. The curves for these essentially follow the line of equal probabilities for detection and false alarm. 
This indicates that no useful performance is being achieved since, for any given threshold, the same 
proportions of detections and false alarms are being obtained. In other words, the classification is 
essentially random. At the other end of the scale, the military vehicles (A, B, D and G) are showing a level 
of classification performance in that relatively high probabilities of detection can be achieved for 
relatively low probabilities of false alarm. The ROC curves for the tractor with trailer (E) water tower (F) 
lie between these extremes. These results are consistent with the observation made in section 4.2 that the 
military vehicles appear to be more easily distinguishable than the non-military objects.  

 Probability of detection Probability of false alarm 

Target A 0.80 0.11 

Target B 0.95 0.09 

Target D 0.89 0.10 

Target G 0.98 0.14 

Table 4.5: Summary of probabilities of detection and false alarm for military vehicles using a 
correlation threshold of 0.8.  
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Target A Target B 

Target C Target D 

Target E Target F 
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Target H Target I 

Figure 4.1: ROC curves showing probability of detection versus false alarm as correlation 
threshold is varied for Targets A to I excluding Target G.  

Target G Target G using simulated training images 

Figure 4.2: ROC curves showing probability of detection versus false alarm as correlation 
threshold for Target G using training database from in situ trial data(left) and from simulated 

signature predictions (right).  

The performance against the military vehicles will now be examined more closely. Operationally, a single 
correlation threshold needs to be set and the results of section 3 suggest that a value of 0.8 is a suitable 
choice since within-class variations still produce values exceeding this. Using this threshold, the 
probabilities of detection and false alarm shown in Table 4.5 are obtained.  

It can be seen that the probabilities of false alarm are all around 0.1 (although that for Target G is a little 
higher than the rest) whilst the probabilities of detection vary from 0.8 to 0.98 reflecting the varying 
degrees to which each target is distinguishable from the others. From an operational perspective, this 
means that  to achieve a detection probability of between 80% to 100%  a false declaration will be made 
10% of the time. It should be noted that, from the results of section 4.2, it can be concluded that most of 
the false declarations will arise from other military vehicles since the non-military objects were easily 
classified as being unrecognised.  
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An important operational factor for classification algorithms is the question of how the training database 
of imagery is populated. In these experiments, the test and training images were all obtained form exactly 
the same experimental trial. However, in practice, the training imagery may have to be obtained using 
turntable ISAR imaging or through the use of signature predictions using CAD (computer aided design) 
models of the vehicles of interest [2]. The impact of this disparity between the training data source and the 
operational data needs to be investigated.  

A limited assessment of this issue has been made under the current study. For Target G, a training set 
consisting of signature predictions was generated at the appropriate resolution and geometry. The single 
target identification performance was then assessed as before using all the in situ trial test images and 
resulted in the ROC curve shown in the right of Figure 4.2. It is very encouraging that a significant level 
of classification performance has been achieved in this case. However, it is clear that the performance is 
also significantly worse than when test and training data are from the same data source as in the ROC 
curve on the left hand side of Figure 4.2. Using a correlation threshold of 0.8, the probability of false 
alarm in this case is 0.09 whilst the probability of detection is 0.55. Thus, in comparison to the results 
above for the same data sources, the false detections have been maintained at around 10% whilst the 
correct declarations have fallen substantially to 55%.  

The performance results presented in this section have demonstrated that single target identification can be 
achieved using a template-matching approach but that the achievable performances are limited by the 
practical consideration that the training database will be populated using a different data source than that 
which will be used operationally. The conclusion is that improved performance needs to be achieved using 
algorithms which are, in particular, robust to the use of data from different sources, e.g. ISAR turntable 
imagery or signature predictions.  

5. CONCLUSIONS 

The results of various performance assessments have been reported using a set of four military vehicles 
and five non-military objects acting as “confusers”. It has been found that detection rates for a specific 
military vehicle within this target set ranges from 80% to 98% depending on the vehicle type with a false 
classification rate of about 10%. These results were obtained using training and test imagery from the 
same experimental data source. However, in practice the training database will be populated beforehand 
using, for example, ISAR turntable measurements or signature predictions. A limited experiment using 
training data for one vehicle generated from a signature prediction model revealed a drop in performance 
to 55% for a false alarm rate of about 10%.  

The performance results which have been obtained have demonstrated that single target identification can 
be achieved using a template-matching approach but that the achievable performances are limited by the 
practical consideration that the training database will be populated using a different data source than that 
which will be used operationally. The conclusion is that improved performance needs to be achieved using 
algorithms which are, in particular, robust to the use of data from different sources, e.g. ISAR turntable 
imagery or signature predictions. A possible avenue of future research is thus the use of a classification 
approach which exploits understanding of the physics of the radar interaction with the target [2].  
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APPENDIX 
The data sets used in this study all consisted of fully polarimetric, 30cm resolution X-band imagery. 
The first data set was obtained at a Regular Army Assistance Trial (RAAT) on Salisbury plain in which 
spotlight imagery of targets in open ground were obtained every degree over 360° at an incidence angle 
of 5°. An example image is shown in Figure A.1 with labels showing the targets of interest in this 
study. The second data set consisted of ISAR turntable images of Target G formed every degree over 
360° at an incidence angle of 35°. The images at every 10° are shown in Figure A.2. The third data-set 
consisted of images generated from signature predictions for Target G at 5° for direct comparison with 
the RAAT trial imagery. These simulated images at every 10° are shown in Figure A.3. 

TargetA

TargetI

TargetH

TargetG

TargetF

TargetE
TargetD

TargetC

TargetB

 

Figure A.1: An example image from the RAAT trial data-set. 
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Figure A.2: Images of Target G at 10° intervals from the ISAR turntable data-set 

 

Figure A.3: Images of Target G at 10° intervals from the simulated data-set. 
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